Cell Biology

... from active transport to vesicles

endosomes

UCSB Researchers Discover That The Cell's Endosomes Use A Surprising Transportation System: "Endosomes travel to the cell's nucleus using back-and-forth symmetrical movement, rather than taking a more direct route. This forward and reverse motion leads to even distribution of the endosomes on microtubules.

An aster-like layout of the microtubules helps the endosomes accumulate at the nucleus. The researchers think this non-direct approach to the nucleus has evolved to allow hundreds of endosomes to bring nutrients and molecular information to the cell's center for processing. Even if the cell moves or if there's increased traffic flow, there's never a traffic jam on the microtubules.

While it has long been known that endosomes travel in a bidirectional way, it has not previously been established that the transport system is symmetrical."

Џ beautiful Flash 8 animation - Inner Life of the Cell, which shows bidirectional transport of endosomal vesicles, and Interpretation: Inner Life of the Cell Џ

• A • adhesion • C • cell membranescellular adhesion moleculescellular signal transductioncentrioleschemotaxischloroplastciliacommunicationconcentration gradientscytokine receptorscytoplasmcytoskeleton • E • energy transducersendoplasmic reticulumendosomesexosome • G • Golgi apparatusGPCRs • H • hormones • I • ion channels • L • lysosome • M • meiosismicrotubulesmitosismitochondrion • N • Nitric Oxideneurotransmissionneuronal interconnectionsnuclear membranenuclear pore • P • pinocytosisproteasomepumps • R •receptor proteinsreceptor-mediated endocytosis • S • second messengerssignaling gradientssignal transductionspindlestructure • T • transporttwo-component systems • V • vacuolevesicle

Virtual Cell Textbook - Cell Biology :

. . . developing since 10/06/06